Archive for the ‘College News’ Category

Science Evolves

Friday, September 12th, 2014

salmon

While evolution often evokes thoughts about ancient origins of life, University of Maine researcher Michael Kinnison says applied evolutionary biology is about improving the future — including pressing matters of day-to-day life and issues of international policy.

A paper by lead authors from the University of Copenhagen and the University of California, Davis, as well as Kinnison, highlights ways in which food security, human health and biodiversity can benefit in the short- and long-term by using principles of evolutionary biology.

The paper published online Sept. 11 at Science Express indicates when evolution is overlooked the prevailing approaches to treat human disease, reduce agricultural pests and manage at-risk wildlife can be detrimental to achieving sustainable solutions and exacerbate the very problems they’re trying to prevent.

“Applying evolutionary biology has tremendous potential because it takes into account how unwanted pests or pathogens may adapt rapidly to our interventions and how highly valued species, including humans …, are often very slow to adapt to changing environments through evolution,” says Peter Søgaard Jørgensen, a lead author from the Center for Macroecology, Evolution and Climate at the University of Copenhagen.

“Not considering such aspects may result in outcomes opposite of those desired, making the pests more resistant to our actions, humans more exposed to diseases, and vulnerable species less able to cope with new conditions.”

Prior research by Kinnison, professor of evolutionary applications, heightened awareness that evolution is a surprisingly dynamic process, often fastest on the shortest time frames — even in one or two generations — and is extensively shaped by human activities. Much of his research considers human evolutionary effects on fish and wildlife populations.

Prime examples affecting humans include pathogens and pests that quickly evolve resistance to antibiotics and pesticides.

“Uncontrolled evolution is often outpacing our best technology,” he says.

For instance, Kinnison and his collaborators note there are more than 11,000 documented cases of pesticide resistance in about 1,000 species of insects and weeds, and that plant pathogens jeopardize agricultural economies and food supplies worldwide.

And, the World Health Organization has warned that microbial resistance to antimicrobial drugs threatens achievements of modern medicine.

“But there is more to this than doom and gloom,” Kinnison says. “A major emphasis of our article is that there are some amazingly creative solutions being applied to manage evolutionary challenges and that these approaches can often be shared and adapted to meet new challenges.”

For example, farmers in the U.S. and Australia set aside pest-friendly refuges, or havens, to delay the evolution of insect resistance to costly chemical controls and genetically engineered crops that support the most production.

Researchers say these refuges have effectively suppressed resistance in the pink bollworm, an invasive pest of cotton.

The paper’s authors suggest refuge strategies may be adapted to broader applications, including preserving the economic value of fisheries and improving outcomes in cancer treatment.

Applied evolution is showing up in some surprising places. The U.S. Atlantic Salmon Recovery Program, and similar programs that use artificial breeding efforts to supplement dwindling wild populations, historically focused on avoiding losses of genetic variation.

These programs now also prioritize a need to avoid inadvertent adaptation of fish to captivity.

Research indicates salmon and other fish adapt rapidly to living in captivity and become dependent on humans, which Kinnison says negatively impacts their ability to survive in the wild.

Fisheries scientists thus seek to limit the number of generations that endangered salmon are bred in captivity and seek opportunities to incorporate new genetic contributions from wild fish.

To show the broad application of evolution to global challenges, the authors promote a simple framework for evolutionary management strategies based on adaptive “match” or “mismatch.”

Researchers say this framework reveals approaches that might otherwise be missed as evolutionary and is applicable to both fast- and slow-evolving species.

Scott P. Carroll, biologist at the University of California Davis and director of the Institute for Contemporary Evolution, says sharing ideas and strategies is particularly important to prevent the spread of new infectious diseases and antimicrobial resistance genes between natural, agricultural and human health systems.

The authors emphasize coordinating applied evolutionary principles across these traditionally isolated sectors and, in some cases, at international scales, will be necessary.

They highlight as an example the dual use of antibiotics in human health and food production. Livestock around the planet are given antimicrobial drugs to increase meat production. The astronomical number of livestock greatly increases the opportunity for evolution of resistant pathogens that might harm humans where animal and human antibiotics overlap in mechanism.

Those resistant pathogens can spread through global trade and, in some cases, exchange resistance genes with other strains, say the researchers.

Use of antibiotics in agricultural animals has been implicated in the origins of resistant Escherichia coli found in people afflicted with a potentially fatal whole-body inflammation.

“It’s sobering to think that farming practices in one part of the world might give rise to pathogens affecting human populations elsewhere,” Kinnison says.

“We need international policies that help mitigate such challenges.”

Jørgensen agrees that policy and coordination are critical.

“By using regulatory and redistribution tools, local communities and governments play a crucial role in ensuring that everybody gains from the benefits of using evolutionary biology to realize the long-term goals of sustainable development such as increasing food security, protecting biodiversity and improving human health and well-being,” he says.

Jørgensen will present the research team’s perspective during the Oct. 22-24 Sustainability Science Congress in Copenhagen. The study is online.

Contact: Beth Staples, 207.581.3777

Buoying Research

Friday, September 12th, 2014

Boss

The Southern Ocean that encircles Antarctica lends a considerable hand in keeping Earth’s temperature hospitable by soaking up half of the human-made carbon in the atmosphere and a majority of the planet’s excess heat.

Yet, the inner workings — and global importance — of this ocean that accounts for 30 percent of the world’s ocean area remain relatively unknown to scientists, as dangerous seas have hindered observations.

Princeton University and 10 partner institutions seek to make the Southern Ocean better known scientifically and publicly through a $21 million program that will create a biogeochemical and physical portrait of the ocean using hundreds of robotic floats deployed around Antarctica.

In addition, NASA awarded $600,000 to the University of Maine, in collaboration with Rutgers University and scientists from the above project, for a complementary project that equips the floats with bio-optical sensors that gather data about biological processes in the water column.

UMaine oceanographer Emmanuel Boss, an expert in marine optics and in the use of optical sensors to study ocean biogeochemistry, is leading the companion project.

The Southern Ocean Carbon and Climate Observations and Modeling program, or SOCCOM, is a six-year initiative headquartered at Princeton and funded by the National Science Foundation’s Division of Polar Programs, with additional support from the National Oceanic and Atmospheric Administration (NOAA) and NASA.

“SOCCOM will enable top scientists from institutions around the country to work together on Southern Ocean research in ways that would not otherwise be possible,” says SOCCOM director Jorge Sarmiento, Princeton’s George J. Magee Professor of Geoscience and Geological Engineering and director of the Program in Atmospheric and Oceanic Sciences.

“The scarcity of observations in the Southern Ocean and inadequacy of earlier models, combined with its importance to the Earth’s carbon and climate systems, mean there is tremendous potential for groundbreaking research in this region,” Sarmiento says.

About 200 floats outfitted with biogeochemical sensors that provide near-continuous information related to the ocean’s carbon, nutrient (nitrate, in particular) and oxygen content, both at and deep beneath the surface, are central to the study.

The floats are augmented biogeochemical versions of the nearly 4,000 Argo floats deployed worldwide to measure ocean salinity and temperature. SOCCOM marks the first large-scale deployment of these biogeochemical floats.

“These floats are revolutionary and this major new observational initiative will give us unprecedented year-round coverage of biogeochemistry in the Southern Ocean,” Sarmiento says.

The floats will increase the monthly data currently coming out of the Southern Ocean by 10 to 30 times, Sarmiento says.

The data will be used to improve recently developed high-resolution earth-system models, which will advance understanding of the Southern Ocean and allow for projections of Earth’s climate and biogeochemical trajectory.

Boss says the additional optical sensors measure backscattering of light, which provides information about particles — including bacteria and phytoplankton in the water — and measure chlorophyll fluorescence — a pigment unique to phytoplankton.

The information will help NASA verify data that its satellites glean daily, extend the product to depth, and help improve currently used algorithms.

In keeping with SOCCOM’s knowledge sharing, or “broader impacts,” component, all the information collected will be freely available to the public, researchers and industry.

SOCCOM will provide direct observations to further understand the importance of the Southern Ocean as suggested by models and ocean studies. Aside from carbon and heat uptake, models have indicated the Southern Ocean delivers nutrients to lower-latitude surface waters that are critical to ocean ecosystems around the world.

In addition, the impacts of ocean acidification as levels of carbon dioxide in the atmosphere increase are projected to be most severe in the Southern Ocean.

Boss says the Southern Ocean — the second smallest of the planet’s five primary oceans — has a disproportionate role in climate regulation. Carbon stored deep in the ocean comes to the surface here and some is released into the atmosphere — however, given the increase in atmospheric CO2 in past decades, much less is released than would be expected.

He says there is still much to learn about this ocean’s significant role in climate regulation.

“It’s a hard area to study,” Boss says of the ocean that encircles Antarctica. “Because there are no barriers, the current is extremely strong. It has some of the roughest seas in the world.”

Other than administering the project, Sarmiento and other Princeton researchers will co-lead the modeling and broader impacts components, as well as coordinated data management. Researchers from NOAA’s Geophysical Fluid Dynamics Laboratory housed on Princeton’s Forrestal Campus will carry out high-resolution earth-system simulations in support of the modeling effort, which is led by the University of Arizona and includes collaborators from the University of Miami.

The floats will be constructed at the University of Washington with sensors from the Monterey Bay Aquarium Research Institute; NOAA’s Climate Program Office will provide half of the basic Argo floats. Float deployment, observation analysis and data assimilation will be led by the Scripps Institution of Oceanography at the University of California-San Diego. Climate Central, a nonprofit science and journalism organization based in Princeton, will oversee the broader-impacts component. Researchers from Oregon State University and NOAA will develop the floats’ carbon algorithms.

Contact: Beth Staples, 207.581.3777

Fantastic Migrants

Friday, September 5th, 2014

Sandpiper

Saturday, Sept. 6 is World Shorebirds’ Day — a time to celebrate “fantastic migrants.” For biologists Rebecca Holberton and Lindsay Tudor, nearly every day is World Shorebirds’ Day.

They’re in the midst of a two-year study of one of those fantastic migrants — the semipalmated sandpipers (Calidris pusilla). Named for the short webs between their toes, the small sandpipers scurry synchronously on black stilt-like legs, “cherking” and searching for food on the shore.

This year, like last, Holberton, a professor at the University of Maine, and Tudor, a wildlife biologist with the Maine Department of Inland Fisheries and Wildlife (MDIF&W), are conducting health assessments and placing “nano tags” — or very small VHF radio transmitters — on sandpipers.

By monitoring the semipalmated sandpipers’ movements, the scientists learn more about the birds’ stay on the Maine coast during their migration from the Arctic to South America.

In 2013, the first year of the study, Holberton, Tudor and UMaine graduate student Sean Rune learned that during the sandpipers’ stopover in Down East, Maine, they moved between feeding sites along upper Pleasant River, upper Harrington River and Flat Bay during low tide and roosted on offshore ledges at high tide.

Hatching-year birds ate and rested an average of 17.5 days in Maine and adults stayed an average of 12.4 days. Adult semipalmated sandpipers weighed, on average, 5 grams more than hatching-year birds on their first migration.

The young sandpipers, on their first migration and new to this area, may have needed more time to gain enough weight for the energy reserves they needed to fly nonstop to their wintering grounds, Holberton says.

Tudor says it’s easy to be a fan of the little balls of fluff that nearly double their body weight to a hefty 1.4 ounces while resting and refueling during their two- to three-week time in Maine.

When the peeps have packed on sufficient weight, they soar 10,000 to 15,000 feet above the Maine coastline to head out over the ocean and catch a good tail wind. If all goes well, they’ll arrive in South America two to four days later.

One of the species’ many talents — in addition to making their way back to their exact same wintering site each season — is the ability to break down lipids in their fat-filled fuel tank under the skin to power their nonstop 3,000-mile journey over the Atlantic Ocean.

Sandpipers don’t put down in the ocean as they can’t tolerate the cold water, says Tudor, which makes their stay on the Maine coast critical to a successful final leg of their uninterrupted migratory flight to South America.

“When in Maine, they’re our (the public) responsibility, our birds,” Tudor says.” We want to know if the habitat (in Maine) is meeting the birds’ needs.”

Studies indicate that since the 1970s the number of these feathered vertebrates has plummeted 80 percent in North America, Tudor says.

The population decline isn’t exclusive to semipalmated sandpipers. Globally, one in eight, or more than 1,300 bird species, are threatened with extinction, according to BirdLife International as reported in National Geographic.

This project increases the researchers’ knowledge about reasons for the nosedive in numbers of semipalmated sandpipers and points to which of its life stages are most perilous.

Semipalmated sandpipers face a variety of challenges, Holberton and Tudor say, including climate change in the Arctic where they breed, loss of coastal habitat along their migration route, and being the target of hunters on the coast of South America where they winter.

The 5-to-6-inch-tall birds are opportunists that feed on intertidal invertebrates at the interface of land and sea. Thus, they’re an indicator species for the health of mudflats as well as sentinels for the natural world in general, Holberton says.

“The Gulf of Maine ecosystem is really facing challenges,” Holberton says. “We share resources and if birds are in trouble then so are we. This is another piece of the puzzle.”

The research, funded by Maine Outdoor Heritage Fund, Eastern Maine Conservation Initiative, Maine Agricultural and Forest Experiment Station, and U.S. Fish & Wildlife Service, utilizes 50 automated VHF telemetry receiver towers that range from the Bay of Fundy to Cape Cod.

The nano tags and towers enable the scientists to track the birds when they arrive in Maine and when they leave. Data is fed into a repository coordinated by Phil Taylor at Acadia University.

Tudor and Holberton are pleased the semipalmated sandpipers’ project has expanded; this summer, the U.S. Fish & Wildlife Service is conducting similar research at the Rachel Carson National Wildlife Refuge in Wells. Comparing the data from Down East with data from southern Maine will be interesting and insightful, says Tudor.

The MDIF&W reviews permits for shoreland development and makes recommendations for conservation management plans for high-value habitats. Tudor says it’s important to know if the initiatives are working and whether birds’ needs are being met.

Using binoculars to watch migrating sandpipers and other shorebirds is a great way to celebrate World Shorebirds’ Day, say the scientists; it’s important for people, and dogs, to give them space so they can eat and rest for their upcoming journey.

Tudor and Holberton encourage bird enthusiasts to participate in bird counts and to contact their local Audubon Society for suggestions on ways to assist birds. Holberton invites bird watchers to like the Gulf of Maine Birdwatch page on Facebook.

Contact: Beth Staples: 207.581.3777

Weathering the Storm

Friday, September 5th, 2014

Flood

Old-timers sharing childhood stories about growing up in Maine sometimes recount hiking 10 miles uphill in 3 feet of snow to get to school — and home.

Turns out those tales, of Maine winters anyway, might not be all that exaggerated.

In the winter of 1904–05, horses pulled huge saws to cut channels in foot-thick ice on Penobscot Bay so maritime traders could deliver goods. And in the winter of 1918, people walked, skated and rode in horse-drawn sleighs across the frozen bay to Islesboro, according to the Belfast Historical Society and Museum.

That same winter, Albert Gray and his companions drove a vehicle across the frozen-solid brine. According to a Bangor Daily News report, the group made several trips in a Ford Model T between Belfast and Harborside, just south of Castine.

Historical records indicate upper Penobscot Bay commonly froze during the winter in the 1800s and early 1900s, says Sean Birkel, research assistant professor with the University of Maine Climate Change Institute (CCI). “Not every year; maybe once or twice a decade.”

February 1934 was the last time it occurred.

Today’s climate is different, he says.

For instance, summer — when the mean daily temperature is above freezing — is about 20 days longer now than it was on average in the late 1800s.

“The lakes really do freeze up later, and ice out is earlier than it used to be,” says Birkel, adding that computer models predict that over the next 40 years, the average temperature in Maine could rise 3–4 degrees Fahrenheit, with most of the warming taking place in winter.

And the number of extreme weather events — like the record-breaking 6.44 inches of rain that flooded Portland on Aug. 13 — has spiked in the last 10 years. Birkel says a 50 to 100 percent increase in rainfall events with more than 2 inches per day has been recorded at weather stations across the state.

The rise of extreme events, including heat and cold waves, is likely tied to the steep decline of Arctic sea ice since about 2000, Birkel says. Studies show rapid warming over the Arctic is changing circulation patterns across the Northern Hemisphere.

In particular, jet stream winds are slowing, which increases the likelihood of blocking events that hold a weather pattern — including heat and cold waves — in place for several days, he says. When blocked patterns finally dissipate, they tend to do so with powerful storm fronts.

Computer models generally predict that in the future, extreme weather events will be the norm, he says.

Birkel and other CCI researchers have developed online tools to assist local community planners prepare for climate changes. The tools — Climate Reanalyzer, 10Green and CLAS Layers — will be explained at the CLAS (Climate Change Adaptation and Sustainability) Conference on Thursday, Oct. 23 at UMaine.

The tools provide users access to station data, climate and weather models, and pollution and health indices, he says.

Paul Mayewski, director of UMaine’s CCI, says the CLAS software explains past, present and future changes in climate at the community level and introduces a “planning system that invokes plausible scenarios at the community level where local knowledge can be applied to produce local solutions.”

For instance, city leaders considering opening a cooling center for residents can review projections for future frequency of heat waves. Medical care workers can assess the potential for increase in Lyme tick disease. And community planners preparing to replace storm water drains can examine predicted precipitation in coming decades.

Esperanza Stancioff, climate change educator with UMaine Cooperative Extension and Maine Sea Grant, says coastal residents and communities need strategies to address sea-level rise and coastal flooding which will result, in part, to melting glaciers and polar ice caps.

UMaine Extension and Maine Sea Grant are among those working with coastal community leaders to help minimize potential hazards to fisheries, aquaculture, working waterfronts and tourism by implementing resilient coastal development strategies and practices, Stancioff says.

Ivan Fernandez, Distinguished Maine Professor in the School of Forest Resources and CCI, says understanding how Maine’s climate is changing is critical for informed risk assessment and cost-effective adaptation.

Warming of the Gulf of Maine impacts the risk of lobster disease as well as market uncertainty, Fernandez says. He points to summer 2012 when warming ocean water resulted in a glut of lobsters and a subsequent bust in prices. In agriculture, rising temperatures can result in an increase of insects and disease, Fernandez says, as well as crop damage and soil erosion due to intense precipitation events.

Opportunities also could result from the changing climate, says Fernandez, including longer growing seasons and emerging shipping lanes in the Arctic Sea due to the receding of the polar ice sheet.

It’s important for businesses to prepare for such changes, says conference presenter John F. Mahon, the John M. Murphy Chair of International Business Policy and Strategy and Professor of Management at UMaine.

“Business has to be engaged with government and other organizations at the local and national level,” says Mahon.

“One of the more useful tools for doing this is the use of plausible scenario planning (PSP). In PSP, we try to envision several plausible futures with equal likelihood of happening and develop a set of ‘warnings’ or ‘indicators’ that tell us which one of the several futures we have identified is unfolding so that we can adapt to it in the most efficient, economical and effective manner.”

On a global scale, Mayewski says climate change is a security issue, as it “impacts human and ecosystem health, the economy; intensifies geopolitical stress; and increases the likelihood of storms, floods, droughts, wildfires and other extreme events.”

In 2012, for instance, 11 weather and climate disasters worldwide killed more than 300 people and caused more than $110 billion in damage, according to the National Oceanic and Atmospheric Administration’s National Climatic Data Center. The disasters included Hurricane Sandy and the largest drought since the 1930s — which also worsened wildfires that burned more than 9 million acres.

The CLAS framework soon will be expanded to encompass national and international planning capability, says Mayewski, who was featured in Years of Living Dangerously, a nine-part documentary about climate change that Aug. 16 won an Emmy Award for Outstanding Documentary or Nonfiction Series.

The CLAS conference, slated from 8 a.m. to 5 p.m. Oct. 23 at Wells Conference Center, costs $45; registration is required by Oct. 13 at online.

Contact: Beth Staples: 207.581.3777

Some Landowners Embrace Sustainability, Some Don’t — SSI Examines Why

Thursday, August 14th, 2014

Why do some landowners embrace sustainability and conservation in their environs while others ignore these concepts altogether? This was one of the main questions Michael Quartuch explored in his doctoral research at UMaine’s Sustainability Solutions Initiative (SSI).

It’s a complex query. As part of SSI’s People, Landscape and Communities team (PLACE), Quartuch, a recent Ph.D. graduate of SSI and UMaine’s School of Forest Resources, wanted to know what lurked beneath the surface of land use decision-making.

“At a broad level, my research focused on understanding and predicting the ways in which humans interact with and shape the surrounding environment. I was very interested in identifying why people are motivated to act sustainably. Specifically, I wanted to explore whether and to what degree landowner stewardship ethics influence individual land use decisions. Similarly, I wanted to test the role landowner place attachment and sense of community play in terms of influencing behavior,” Quartuch said.

Led by associate professors Kathleen Bell and Jessica Leahy, the PLACE team studied small landowners in Maine to develop solutions on key fronts. The team surveyed landowners in an effort to better understand their concerns, attitudes and behaviors. The responses are helping the team to identify outputs of interest to landowners and key stakeholders who frequently interact with them, including local businesses and local and state governments.

“The ability to tap into landowners’ moral and ethical connections with their land, including sense of place and community, has the potential to influence attitudes and behavior. Research findings suggest that landowners feel real responsibility for their property, a sense of stewardship that is evident in both their environmental attitude and their perception of their ability to act on these beliefs,” Quartuch said. “With this information in hand, we can deviate from traditional outreach and education efforts, concentrating on future conservation and sustainable development initiatives.”

Quartuch, a native of Bethlehem, Pennsylvania, has accepted a postdoctoral research associate position at Cornell University in the Department of Natural Resources, Human Dimensions Research Unit. Quartuch’s research will focus on a variety of social aspects associated with wildlife management and conservation.

Supported by National Science Foundation award EPS-0904155 to Maine EPSCoR at the University of Maine.